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J. Phys. A: Math. Gen. 20 (1987) 1719-1731. Printed in the U K  

Can the integrability of Hamiltonian systems be decided by the 
knowledge of scattering data? 

C Jung 
Fachbereich Physik, Universitat Bremen, 2800 Bremen, West Germany 

Received 30 June 1986 

Abstract. A method is proposed to show how scattering data of a classical Hamiltonian 
system can be used to decide whether the Hamiltonian function is completely integrable 
or not. An appropriate infinite set of scattering trajectories is linked together at infinity 
and the intersection of this sequence of trajectories with a surface in the set of all asymptotes 
is studied. The plot of these intersections provides the same information as the plots of 
the usual Poincare sections for bound states do. Numerical examples are given for the 
scattering of a spinning top, for collisional excitation of an oscillator and a rotator and 
for potential scattering under the additional influence of an electromagnetic field. 

1. Introduction 

It is one of the interesting problems in classical mechanics to find methods to decide 
whether or  not a given Hamiltonian function is completely integrable. Up to now it 
is not known how this question can be answered by the sole knowledge of the functional 
form of the Hamiltonian. So far integrability can be demonstrated rigorously only by 
the explicit construction of additional integrals of motion. In all other cases we have 
to rely on hints given by the evaluation of numerical data, in particular by constructing 
plots of PoincarC sections (Poincare 1892). (For the construction of PoincarC sections 
see 9 7.1 in Abraham and Marsden (1978). For many examples of the utility of PoincarC 
plots in the investigation of physical systems see Lichtenberg and  Lieberman (1983).) 
For these plots we need a knowledge of bound-state trajectories of the system. 

What can we d o  if only scattering trajectories are known? Or if even less information 
is available, namely if we only know which incoming asymptotic scattering state will 
develop into which outgoing asymptotic scattering state during a scattering event? 
PoincarC’s original idea does not work in these cases. Regardless of whether the 
Hamiltonian is completely integrable or not, any generic scattering trajectory y pierces 
any surface of section S a finite number of times only. Therefore the points of 
intersection between y and S can never be dense in any part of S and accordingly a 
scattering trajectory can never be chaotic. This also holds for scattering states of 
non-integrable systems with chaotic bound trajectories. The different behaviour 
between scattering and bound states arises because a generic scattering trajectory stays 
in the interaction region only for a finite time and it never comes back infinitely often 
and arbitrarily close to the same point, in contrast to bound trajectories. 
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1720 C Jung 

On the other hand, the totality of all scattering events probes the structure of the 
interaction in the whole space. Therefore the information, whether the Hamiltonian 
is completely integrable or not, must be hidden somehow in the scattering data. The 
aim of the present paper is to construct a map out of the knowledge of the scattering 
events, which reveals this hidden information. 

To obtain a scattering analogue of the Poincark sections we can try to link together 
an infinite number of scattering trajectories at infinity in an appropriate way and let 
this sequence of trajectories pierce some surface in the set of asymptotic states. How 
such a construction can be done in detail for pure potential scattering has been shown 
in a recent paper (Jung 1986). 

The asymptotes of the scattering trajectories (incoming ones as well as outgoing 
ones) are labelled by the values of the impact parameter b and the direction of the 
momentum given by the angle a. For scattering in a two-dimensional configuration 
space b and a are one-component quantities and for scattering in a three-dimensional 
configuration space b and a are two-component quantities. The scattering dynamics 
connects each incoming asymptote with an outgoing asymptote by following the exact 
scattering trajectory. This defines a map M, which maps (b ,  a) values of incoming 
asymptotes on the ( b ,  a )  values of the corresponding outgoing asymptotes. I f  we do 
not care whether the (b ,  a) values belong to in or out asymptotes, then we simply 
obtain a map from the (b ,  a )  space on itself. The iteration of M produces a plot which 
looks like a PoincarC section for bound trajectories. For some initial (b ,  a) values the 
iteration gives smooth closed invariant lines, other values lead to stochastically scattered 
layers of points and some particular (b ,  a )  values are periodic points which are encircled 
by invariant lines and secondary islands. The structure of the plot depends on the 
potential parameters. For some potentials there are exceptional parameter values, for 
which the plot of the iterated map consists of invariant lines only. This happens exactly 
for those parameter values, for which there is a second conserved quantity K in closed 
form, independent of the Hamiltonian H, such that { H,  K }  = 0 on the whole phase space. 

In the present paper this construction is generalised to inelastic scattering, where 
in the scattering process unbound translational degrees of freedom interact and 
exchange energy either with internal bound degrees of freedom or with an external field. 

2. Construction of asymptotic variables 

The map to be constructed operates on the set of all possible asymptotic scattering 
states. At first we have to label asymptotes in an appropriate way. Let us assume that 
the Hamiltonian function of the system has the following form: 

with 

q is the relative position vector between target and projectile with Cartesian components 
q l ,  42, q,. p is the momentum conjugate to q with Cartesian components p , ,  p2, p , .  
m is the reduced mass of the target-projectile system. I are the action variables of 
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the internal degrees of freedom of the target and  the projectile, p are the angles 
conjugate to  I with pi E [-T,  + T ) ,  k is the number of internal degrees of freedom, i.e. 
I and q are vectors with k components, t is the time and Hint is the Hamiltonian for 
the motion of the internal degrees of freedom in the asymptotic region, where they 
are decoupled from the other degrees of freedom. Note that the assumption ( 1 )  implies 
that H in the asymptotic region 

H,, = lim H = p2/2m + H ~ ~ ~ ( z )  (3 )  
191-x 

depends on  the momenta and  actions only and Ha, is completely integrable trivially. 
If V depends on time explicitly, then we use the formalism of the extended phase 

space. For the treatment of mechanics in the extended phase space we follow section 
E.V. in Synge (1960). t becomes an  additional position variable and  its conjugate 
momentum is - E ,  minus the energy. The generator of the dynamics is 

w q ,  P, I, v, t, - E )  = H ( q ,  P, 1, v, t )  - E. (4) 

In the asymptotic region (141 + CO) we find 

a,, =p2/2m + Hint(I) - E. ( 5 )  

How can we label asymptotes? First, we observe, that p, I and E are constant in the 
asymptotic region. The orbital motion of asymptotes can be given by the values of 
the kinetic energy, the direction of the momentum given by the angle (Y and the impact 
parameter b (as in the case of pure potential scattering). For the internal motion we 
have the constant values of I.  But what d o  we d o  with the angles? Along asymptotes 
they move with the asymptotic angular velocity 

If U,,,, would be zero for all i, then the angles would stand still in the asymptotic 
region and could be used to determine the asymptotes further. But what can we d o  
if U,, # O ?  At which point of the asymptote d o  we measure the angles against which 
reference angle? 

To solve this problem, we apply a canonical transformation, such that in the new 
coordinates Gas = 0 and the new angle @ can be measured at any point in the asymptotic 
region. Transformations which remove the internal motion in the asymptotic region 
have been used by Wong and Marcus (1971) and Miller (1970) for semiclassical 
calculations of inelastic molecular scattering. 

Because a,, depends on the momenta only, the transformation can be defined by 
a point transformation in the extended momentum space and then supplemented easily 
to a canonical transformation in the extended phase space. The new coordinates are 
denoted by letters with an  overbar. We construct the transformation such that R,, = P I ,  
i? = E, 1 = I and j j 2 ,  p3  are some convenient functions of p. We give the transformation 
by a generator G which is a function of the old (momentum, action, energy) variables 
and the new (position, angle, time) variables: 



1722 C Jung 

This leads to the transformation formulae 

aG 
a 4i p i  = --==J;(p) for i = 2,3 

for i = 1, 

f2,f3 will be chosen such that 

One possible choice is 

f2(P) =tan-’(P,/Pl) 

f3(P) =tan-’[( p:+ P Y / P 3 1 .  
Then f2 and f3 give the direction of the momentum. Equations (10) are particularly 
useful if V depends on q2  only, i.e. if the potential is rotationally symmetric in the 
position space. Equations ( 8 )  and (9) give 

41 = mq ‘ PIP2 (11) 

i.e. ljl is the time of flight of the system along the asymptote. Equations (1 l ) ,  ( 8 f )  and 
( 8 g )  show that 

- 
t = t - q l  (12) 

4i = vi -was, i (Z)41 (13) 

and 

are constant in the asymptotic region and can be read off at any arbitrary point along 
the asymptote. 

We label asymptotes by giving the values of the quantities ( E ,  p 2 ,  p 3 ,  I, i, q2, q 3 ,  4). 
Trajectories starting in the hypersurface Q = 0 always stay in this hypersurface and 
only those trajectories are physically relevant. Therefore p1 is fixed on the numerical 
value zero automatically. q1 is the only new coordinate, which is not constant along 
asymptotes and it can be used to parametrise trajectories. 

If V does not depend on t explicitly, then we can leave out the coordinates E and 
t from the phase space as uninteresting and leave out the terms containing E in (7) .  
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The set of all possible ( E ,  p 2 ,  p3, I, i, &, q 3 ,  4) values is the space on which the iterated 
scattering map will act. We call this space of asymptotes A and in the next section x 
is a (2k+6)-component vector out of the space A. 

The choice of the canonical transformation is not unique. Besides the generator 
(7) there are many other reasonable possibilities. Another choice would mean other 
coordinates in A or another choice for the space A itself. This freedom in choosing 
A and the coordinates in A corresponds exactly to the freedom in choosing the surface 
of section and the coordinates in this surface for the usual PoincarC sections for bound 
trajectories. 

3. The iteration process 

Each incoming asymptote can be labelled by its value xin E A. Following the exact 
scattering trajectory, which develops from this incoming asymptote, the system finally 
ends at some outgoing asymptote with the value xout E A. We define the scattering map 
M by 

M(xin) = Xout.  (14) 

M acts on incoming asymptotes and turns them into outgoing asymptotes. In order 
to construct an iteration, we need in addition a feedback map F, which turns outgoing 
asymptotes back into incoming asymptotes. Then an iteration can consist in applying 
M and F alternately on some starting point x E A. In order to make a particular choice 
for F we use the following two reasonable restrictions. 

(i) F is allowed to depend on xOut only and it must not depend on any other 
variables or parameters and not on the particular interaction I/. 

(ii) If V = 0 then the composition of M and F should be the identity map on the 
whole space A. 

With these restrictions there remains only the following choice for the feedback 
map F : F applied to the outgoing trajectory labelled by x gives that incoming trajectory, 
which has the same values for all 2k+6  components of x. This gives a one-to-one 
connection, because to any set of values of x there exists exactly one incoming and 
one outgoing asymptote. Therefore, in the space A the map F acts like the identity 
and the iterated scattering map is just the iteration by the map M only. 

The action of the feedback map F can be understood as a compactification of the 
position space. In the q space we cut out a ball BR of radius R, with R chosen such 
that V is negligible outside BR.  In the extended phase space we thereby cut out a 
(2k+7)-dimensional cylinder out of the hypersurface O=O. The space A is half of 
the surface of this cylinder. Parts of the surface of the cylinder are glued together by 
identification of the in and out asymptotes with the same values of x. Thereby a 
trajectory leaving the cylinder in a point p ,  of its surface is fed back automatically 
into the cylinder at the other point p 2  where p2 = F (  p , ) .  The iterated scattering map 
can be understood as a PoincarC return map on the surface of this cylinder. 

4. Numerical examples 

In this section we give a few simple examples for the iterated map constructed in the 
previous sections. In order to be able to show plots of the map we must restrict the 
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examples to systems with two essential degrees of freedom. For all numerical examples 
the reduced mass m is set to the value 1 and all quantities are measured in arbitrary 
dimensionless units. 

4.1. Example 1 

Scattering of a spinning top 

H(p, q, I, cp) = p2/2+ [(l  - Dq2)I +cos cp( 1 - 12) ' /2 ]  exp(-q2) (15 )  

Ha, = p2/2. (16) 

The projectile is a spinning top with total internal angular momentum 1 and I is the 
3-component of the internal angular momentum. ( 1  - Dq2) exp( - q 2 )  is a potential, 
which causes an energy split between the various inclinations of the axis of the top. 
D is a free parameter. cos cp(1 -12)1'2 exp(-q2) is an interaction, which causes the 
inclination of the axis to change. 

This system may be viewed as a classical spin-dependent scattering. For the 
possibility of classical spin models of similar structure see Schiller (1962). The classical 
quantities I and cos cp( 1 - 12)1/2 correspond to the operators u3 and u1 in quantum 
mechanics. aHa,/aI = 0 and the angle (c stands still outside the interaction region and 
we do not need to transform to new coordinates. The q dependence of H is in q2 
only and only the radial variable r = 191 and its conjugate momentum pr are essential 
for the orbital motion. Together with the internal degree of freedom we have two 
essential degrees of freedom and for A we can use the ( I ,  cp) plane. The orbital angular 
momentum L is a conserved quantity throughout the interaction process and its value 
appears only as a parameter in the equations of motion. In the essential variables the 
H function is 

H ( p r ,  r, I,  (c )=pf /2+L2/2r2+[(1-Dr2)I+~~~cp(1-I2)1 /2]exp(-r2) .  (17) 

In figure 1 we have fixed L on the value 1, E on the value 0.5, have chosen several 
initial points in the ( I ,  cp) plane (marked by a cross) and plotted the next 700 iterates 
of these initial points under the map M. For the value D = 0 we obtain invariant lines 
only. This should be correlated with the fact that the square bracket in (17)  is a 
conserved quantity for D = 0. 

Angle 

Figure 1. Iterated scattering map to the Hamiltonian (17) for D = 0, E = 0.5, L = 1.0. The 
vertical axis gives I ,  the 3-component of the internal angular momentum of the projectile. 
The horizontal axis gives the angle cp, canonically conjugate to I. Each initial point is 
marked by a cross. 
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In  figure 2 the value D = 1 has been chosen. We see a layer in the (I, Q )  plane 
covered by stochastically distributed points, which are iterates of a single initial point. 
Besides there are invariant lines and islands around periodic points. For D # 0 there 
seems to be no second conserved quantity in closed form on the whole phase space 
for Hamiltonian ( 1 7 ) .  

4.2. Example 2 

This is an example to demonstrate the method: it is not considered to describe any 
common system. 

H ( p ,  q, I ,  q ) = p 2 / 2 + 1 2 / 2 + ( I  sin p + A p  cos Q )  exp(-q)+2exp(-2q). (18) 

The potential goes to infinity for q + --CO. So we interpret q as In r where r is a radial 
variable of a three-dimensional orbital motion. The limit for asymptotes is the limit 
q + +CO: 

(19) Ha,  = p 2 / 2  + 1 2 / 2  

was = I. ( 2 0 )  

A is a free parameter. 
We apply the canonical transformation given by the generator 

G ( p ,  I ,  ij, C p ) = - i j ( p 2 + 1 * ) / 2 - Q 1  ( 2 1 )  

and obtain 

p = p 2 / 2  + 1 2 / 2  = Ha, 

i = i  
4 = 4 / P  ( 2 2 c )  

4 = Q - I q / P  = Q - u a s ( I ) q / P .  ( 2 2 d )  

In new coordinates Bas = p, Was = 0 and Q is constant in the asymptotic region. The 
iterated scattering map acts in the ( I ,  Q )  plane. 

Now we show the plots of the iterated map for several values of A all for the value 
1 of the energy E. The H function is invariant under the transformation ( I ,  Q ) +  

(-1, - Q ) .  This symmetry also shows up in the plots of the iterated map M .  

-n n 
Angie 

Figure 2. A5 figure 1 for D = 1.0, E = O S ,  L =  1.0. 
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For A = 1.5 in figure 3 we see three large regions of chaotic points and some islands 
of invariant lines surrounded by secondary structures. For A = 1.25 in figure 4 the 
chaos has diminished to small strips and we observe mainly invariant lines. For A = 1.05 
in figure 5 there is no chaos of visible size left. We see a few large islands and many 
invariant lines going around all values of Q. For A = 1 (not shown in a figure) the plot 
consists of horizontal invariant lines only. For A decreasing below 1 resonance islands 
show up again and for small or negative values of A chaotic strips can be found again. 

What is special for the value A = 1 ? For A = 1 there is the second conserved quantity 

K = I + sin (p exp( -4). (23) 

Angle 

Figure 3. Iterated scattering map to the Hamiltonian (18) for A = 1.5, E = 1.0. The vertical 
axis gives I, the action of the internal degree of freedom. The horizontal axis gives the 
transformed angle 8, canonically conjugate to I. Each initial point is marked by a cross. 

-n n 
Angk 

Figure 4. As figure 3 for A = 1.25, E = 1.0. 

/ - - - - - - - -  
/ - -_ -  - \  

- \  

-1.47 
-n n 

Angle 

Figure 5. As figure 3 for A = 1.05, E = 1.0. 
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A direct calculation shows that { K ,  H} = 0. There seems to be no second conserved 
quantity on the whole phase space for A # 1. In  the asymptotic region K = I and 
therefore I is a conserved quantity for the map M if K is constant along exact 
trajectories. I may change inside the interaction region. But in the outgoing asymptotic 
state I must have the same value again as in the incoming asymptotic state. 

Accordingly, for A = 1 the iterated scattering map is a pure twist map and for A 
deviating from 1 it is a perturbed twist map with A - 1 acting as perturbation parameter. 
In figures 3-5 we see all the phenomena, which are to be expected for perturbed twist 
maps (see Chirikov 1979, Greene 1979). For A close to 1 the differences in I between 
incoming and outgoing states are small and the first images of lines I = constant under 
the map M are slightly bent curves. In addition the difference pin-pout is nearly 
constant on these curves. However, for A far away from 1 the images of curves 
I = constant can have a very complicated structure with long tendrils and very small 
changes in pin cause enormous changes in I and in pin - pout. Figure 6 shows an 
example for A = 2.  There is the curve I = constant = -0.6 and its image under M. This 
figure indicates that the plot of the iterated map shows mainly chaos for A=2.  
According to MacKay and Percival(l985) a perturbed twist map does not have invariant 
curves going around all values of the angle in those regions of the action variable, 
where the images of horizontal lines become steeper than some limit value. 

Another hint on the complicated structure of the scattering process and on the 
sensitivity of the scattering trajectory on the initial angle pin gives figure 7. Here the 

1.41 

c 
P + 
2 

-1.41 
-n n 

Angle 

Figure 6. The line I =constant = -0.6 and its image under the scattering map M for the 
model system (18). The vertical axis gives I ,  the action of the internal degree of freedom. 
The horizontal axis gives the angle @, canonically conjugate to I .  A = 2.0, E = 1.0. 

-1 I I 
-n n 

Angle 

Figure 7. Time delay of the scattering trajectory as a function of the angle $ for the model 
system (18) for fixed values of the energy E = 1 and the action I = 0.2, A = 2.0. 
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initial action Zin is fixed on Z = 0.2. The angle qin is scanned from - 7 ~  to +.n and for 
each value of qin the time delay of the scattering trajectory is plotted. We see very 
fine and rapid oscillations. In contrast, for A = 1 the time delay is a constant function 
of ( P i n .  

4.3. Example 3 

Collisional excitation of an oscillator 

H = p 2 / 2 + I + [ 1 - B q 2 + A  sin q ( 2 Z ) ’ ” ]  exp(-q2) (24) 

p and q are momentum and position of a projectile, which hits an oscillator with 
action I, angle cp and frequency 1 sitting at the origin. A and B are free parameters. 
V depends on q2 only. Therefore the orbital angular momentum is conserved and the 
orbital motion lies in a plane. Accordingly, we can assume that p and q are two- 
dimensional vectors right from the beginning. 

Applying the canonical transformation with the generator 

G=-q  ( P2/2+Z)-Q,tan-’ (p~/pl ) -cpz  (25) 

gives 
- 

Has = P1 
Q 1 =  4 ‘  P I P 2  

Q 2  = -qlP2+ q2p1= - L  

cp=cp-q, 
Q2 is minus the orbital angular momentum and it is a conserved quantity. For A = 0, 
H does not depend on cp. Then I is conserved and M is a pure twist map. For A # 0 
there is no obvious third conserved quantity and M is a perturbed twist map. For L 
fixed the space A is the ( I ,  Q )  plane. 

In figure 8 we show an example of a plot of the iterated scattering map for the 
value E = 1 of the energy and L = 1 of the orbital angular momentum. We see stochastic 
regions, invariant lines and chains of islands in a pattern, which is common for 
perturbed twist maps and which occurs in qualitatively similar form in PoincarC plots 
of bound trajectories. 

It--- ... . --*- 1 

Angle 

Figures. Iterated scattering map to the Hamiltonian (24) for the parameter values indicated. 
The vertical axis gives I ,  the action of the oscillator. The horizontal axis gives the 
transformed angle 9, canonically conjugate to I. Each initial point is marked by a cross. 
A=0.5, B =5.0, E = 1.0, L =  1.0. 
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4.4. Example 4 

Collisional excitation of a rotator 

H = p 2 / 2  + Z2/2 + (Aq,  sin cp + Aq, cos cp + B) exp( - q 2 ) .  (28) 
We assume that the orbital motion of the projectile is in a plane and p and q are 
two-dimensional momentum and position vectors. The projectile hits a rigid rotator 
sitting in the origin with internal angular momentum I and angle cp. A and B are free 
parameters. Applying the canonical transformation with generator 

(29) G = -cj,(p:+p:+ Z2)/2 - ( I  - i j 2 )  tan- '(p2/pl)  - 91 
gives 

gas =PI 
4 1 = 9 ' P / P 2  

4 2  = q1p2 - @PI+ I 
9 = cp -tan-'( p 2 / p 1 )  - 14'.  

q2 is the total angular momentum J and is a conserved quantity. For fixed J the space 
A is the ( I ,  9 )  plane. For A = 0, H does not depend on cp. Then I is conserved and 
M is a pure twist map. For A # 0 there is no obvious third conserved quantity and 
M is a perturbed twist map. Figure 9 shows an example of a plot of the iterated 
scattering map for the values E = 1 of the energy and J =0.5 of the total angular 
momentum. 

1 

s + 
C E 
L 
0 
3 
- 
m s 

-1 41 L 
-n n 

Angle 

Figure 9. Iterated scattering map to the Hamiltonian (28) for A = 1.0, E = 0.50, E = 1.0, 
J = 0.5. The vertical axis gives I ,  the angular momentum of the rotator. The horizontal 
axis gives the transformed angle @, canonically conjugate to I .  Each initial point is marked 
by a cross. 

4.5. Example 5 

Field modified scattering 

H = [ p - A U ( q )  cos(wt)12/2 - exp( - q 2 )  

where 
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This describes the scattering of a projectile in one dimension off a local potential 
-exp(-q2) under the additional influence of an electromagnetic field in dipole approxi- 
mation. A is the amplitude and w is the frequency of the field. U(q)  is a cutoff 
function for the field in position space 

R = H - E  R,,=p2/2- E. (35)  

The canonical transformation with the generator 

G = - q( p2/2 - E ) + f E  (36 )  

gives 

4 = 9/P ( 3 7 a )  

t = t - q .  ( 3 7 6 )  
- 

According to 9 2 the space A is the ( E ,  I )  plane. However, it is more convenient to 
use in the plots the transformed field phase wlmod 257 instead of I itself. In contrast 
to the other four examples there is no upper limit for the momentum variable E in 
this case. For the amplitude A = 0, M is a pure twist map. It becomes perturbed as 
soon as A # 0. Figure 10 is an example for a plot of the iterated scattering map. Here 
we see surprisingly many islands around points of period 1 in an arrangement, which 
is unusual in PoincarC plots for bound systems and also unusual for scattering maps 
of time-independent systems. The basic structure of the plot seems to repeat itself for 
increasing energy on an increasing vertical scale. The relative fraction of the area filled 
by stochastic points decreases with increasing energy. The repetition of the basic 
pattern has been checked up to an energy value of E = 1000. 

-n n 
Fieid phase 

Figure 10. Iterated scattering map to the model system (32) for A =0.1, w = 10.0. The 
vertical axis gives E, the asymptotic kinetic energy of the projectile. The horizontal axis 
gives wTmod 27r, the transformed phase of the external field. Each initial point is marked 
by a cross. 

5. Conclusions 

For scattering systems a map M has been constructed from the set of asymptotes onto 
itself. This construction works if the H function has the form of equation (1). It is 
essential that the internal motion is completely integrable in the asymptotic region. In 
this case we can find a canonical transformation to new coordinates in the extended 
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phase space, such that all coordinates except l j ,  are constant along asymptotes. PI has 
the value zero anyway in the formalism of the extended phase space. So the new 
coordinates beside (ij l ,p,)  can be used to label asymptotes. ljl is the time parameter 
along the asymptotes. If the motion of the internal degrees of freedom would be 
chaotic in the asymptotic region, then such a canonical transformation could not be 
found and  the whole method of this paper would fail. 

The essential idea for the iteration procedure is to link together an  infinite set of 
scattering trajectories into a single object and to treat this new object in the same way 
as a bound trajectory is treated in the usual Poincari construction. 

The iteration of M shows chaotic behaviour in most cases. Only for a few 
exceptional systems does the iterated map give invariant lines only. These exceptional 
cases are exactly the ones in which a second conserved quantity exists on the whole 
phase space. Therefore the construction given in this paper solves the problem raised 
in the introduction. It gives a numerical indication whether the Hamiltonian is 
integrable or not. As input information we need only the knowledge of which incoming 
asymptote is turned into which outgoing asymptote during the scattering process. This 
is interesting because many systems of practical interest are investigated in scattering 
experiments, giving the connection between in- and outgoing asymptotes. 

So far we did not consider that in classical systems there can be exceptional 
trajectories at  positive energy, which have no incoming or no outgoing asymptotes. 
(For the occurrence of such orbiting trajectories see § 5.4 in Newton (1982).) However, 
these exceptional trajectories do not cause serious problems, because they form a set 
of measure zero and they d o  not prevent the numerical construction of the scattering 
map. 
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